Given trajectories with gaps, we investigate methods to tighten spatial bounds on areas (e.g., nodes in a spatial network) where possible rendezvous activity could have occurred. The problem is important for reducing the onerous amount of manual effort to post-process possible rendezvous areas using satellite imagery and has many societal applications to improve public safety, security, and health. The problem of rendezvous detection is challenging due to the difficulty of interpreting missing data within a trajectory gap and the very high cost of detecting gaps in such a large volume of location data. Most recent literature presents formal models, namely space-time prism, to track an object's rendezvous patterns within trajectory gaps on a spatial network. However, the bounds derived from the space-time prism are rather loose, resulting in unnecessarily extensive post-processing manual effort. To address these limitations, we propose a Time Slicing-based Gap-Aware Rendezvous Detection (TGARD) algorithm to tighten the spatial bounds in spatial networks. We propose a Dual Convergence TGARD (DC-TGARD) algorithm to improve computational efficiency using a bi-directional pruning approach. Theoretical results show the proposed spatial bounds on the area of possible rendezvous are tighter than that from related work (space-time prism). Experimental results on synthetic and real-world spatial networks (e.g., road networks) show that the proposed DC-TGARD is more scalable than the TGARD algorithm.
翻译:鉴于存在差距的轨迹,我们调查在可能发生会合活动的地区(如空间网络中的节点)上收紧空间界限的方法,这个问题对于减少利用卫星图像处理可能的会合地区的繁重人工工作量十分重要,而且有许多社会应用来改善公共安全、安保和健康。由于在轨迹差距范围内难以解释缺失的数据,以及发现如此大数量的位置数据差距的成本极高,因此会合探测问题具有挑战性。大多数最近的文献提供了正式模型,即空间-时间棱镜,用以跟踪空间网络轨迹差距范围内的物体会合模式。然而,从空间-时间棱镜中得出的界限相当松散,导致不必要的广泛的后处理手工工作。为克服这些限制,我们提议采用基于时间的Gap-Award-Awards Rendevous 检测(TARD)算法,以收紧空间网络的空间界限。我们提议采用双向时间-时间-G-Sloral-al-alg-ral-ral-commal-trainal-Siral-leg-trading the real-Ial-ral-Ial-hal-Ial-Ial-LAgal-LAsal-ILAs-S-S-IL-S-S-S-S-S-IL-IA-S-S-S-IB-S-IB-IB-S-IB-IB-IB-S-IB-A-A-A-A-A-A-A-A-A-I-I-IUN-A-IUN-A-A-A-A-A-A-A-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-