Some interpersonal verbs can implicitly attribute causality to either their subject or their object and are therefore said to carry an implicit causality (IC) bias. Through this bias, causal links can be inferred from a narrative, aiding language comprehension. We investigate whether pre-trained language models (PLMs) encode IC bias and use it at inference time. We find that to be the case, albeit to different degrees, for three distinct PLM architectures. However, causes do not always need to be implicit -- when a cause is explicitly stated in a subordinate clause, an incongruent IC bias associated with the verb in the main clause leads to a delay in human processing. We hypothesize that the temporary challenge humans face in integrating the two contradicting signals, one from the lexical semantics of the verb, one from the sentence-level semantics, would be reflected in higher error rates for models on tasks dependent on causal links. The results of our study lend support to this hypothesis, suggesting that PLMs tend to prioritize lexical patterns over higher-order signals.
翻译:某些人际动词可以隐含地将因果关系归结于其主题或对象,因此据说带有隐含的因果关系偏见。 通过这种偏见,可以从叙述中推断出因果关系,帮助理解语言。我们调查的是,是否预先训练的语言模式(PLM)编码IC偏见并在推论时使用。我们认为,三种不同的PLM结构的情况是,尽管程度不同,但情况不同。然而,原因并不一定总是隐含的 -- -- 当一个原因在从属条款中明确陈述时,与主条款中的动词相关的IC偏见导致人类处理的延迟。我们假设,在结合两种相互矛盾的信号时,人类面临的临时挑战,其中一种来自动词的词汇性语义语义,一种来自句级语义语义学,将反映在取决于因果关系的任务的模型中更高的错误率中。我们的研究的结果支持了这一假设,表明PLMs倾向于将法性模式置于高于较高顺序的信号之上。