Owing to the remarkable development of deep learning technology, there have been a series of efforts to build deep learning-based climate models. Whereas most of them utilize recurrent neural networks and/or graph neural networks, we design a novel climate model based on the two concepts, the neural ordinary differential equation (NODE) and the diffusion equation. Many physical processes involving a Brownian motion of particles can be described by the diffusion equation and as a result, it is widely used for modeling climate. On the other hand, neural ordinary differential equations (NODEs) are to learn a latent governing equation of ODE from data. In our presented method, we combine them into a single framework and propose a concept, called neural diffusion equation (NDE). Our NDE, equipped with the diffusion equation and one more additional neural network to model inherent uncertainty, can learn an appropriate latent governing equation that best describes a given climate dataset. In our experiments with two real-world and one synthetic datasets and eleven baselines, our method consistently outperforms existing baselines by non-trivial margins.
翻译:由于深层学习技术的显著发展,已经作出了一系列努力来建立深层次的基于学习的气候模型。虽然大多数模型使用经常性神经网络和/或图形神经网络,但我们根据神经普通差异方程式和扩散方程式这两个概念设计了一个新的气候模型。许多涉及布朗粒子运动的物理过程可以用扩散方程式来描述,结果,它被广泛用于模拟气候。另一方面,神经普通差异方程式(NODEs)是从数据中学习一个潜在的对数调节 ODE 。在我们介绍的方法中,我们把它们合并成一个单一的框架,提出一个概念,称为神经扩散方程式(NDE )。我们NDE配备了扩散方程式和另一个神经网络来模拟内在不确定性,可以学习一个适当的潜在方程式来最好地描述给定的气候数据集。在我们用两个真实世界和一个合成数据集和11个基线进行的实验中,我们的方法始终以非三边边距比现有基线。