We present methodological advances in understanding the effectiveness of personalized medicine models and supply easy-to-use open-source software. Personalized medicine involves the systematic use of individual patient characteristics to determine which treatment option is most likely to result in a better outcome for the patient on average. Why is personalized medicine not done more in practice? One of many reasons is because practitioners do not have any easy way to holistically evaluate whether their personalization procedure does better than the standard of care. Our software, "Personalized Treatment Evaluator" (the R package PTE), provides inference for improvement out-of-sample in many clinical scenarios. We also extend current methodology by allowing evaluation of improvement in the case where the endpoint is binary or survival. In the software, the practitioner inputs (1) data from a single-stage randomized trial with one continuous, incidence or survival endpoint and (2) a functional form of a model for the endpoint constructed from domain knowledge. The bootstrap is then employed on data unseen during model fitting to provide confidence intervals for the improvement for the average future patient (assuming future patients are similar to the patients in the trial). One may also test against a null scenario where the hypothesized personalization are not more useful than a standard of care. We demonstrate our method's promise on simulated data as well as on data from a randomized comparative trial investigating two treatments for depression.


翻译:在理解个性化医学模型的有效性和提供易于使用的公开源代码软件方面,我们提出了方法上的进步。个性化医学涉及系统地使用个别病人特征,以确定哪种治疗选择方案最有可能使病人平均产生更好的结果。为什么个性化医学在实践中没有做更多的事?许多原因之一是,从业人员无法轻易地从整体上评价其个性化程序是否比护理标准好。我们的软件“个性化治疗评估器”(R 包PTE)提供了在许多临床假设中改进样板的推论。我们还扩展了目前的方法,允许在终点为二分点或生存的案例中对改进作出评价。在软件中,从业者输入的数据(1) 单一阶段随机试验的数据,有一个连续的、发生率或生存终点,(2) 一种从域知识中构建的端点模型的功能形式。然后,在为改进未来平均病人(假设未来病人与试验中的病人相似)提供信心间隔的模型中使用了靴杆。我们还扩大了目前的方法,即允许在最后点为二个病人或生存点的情况下对改进情况进行评估。在软件中,从一个单一的随机性试验中,我们也可以对一个比较的模型进行试验,用以检验。在一种模拟的模型中用一个假设中,在一种比较性化的假设中可以证明一个比个人治疗的标准是比较的假设。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员