Quantitatively predictive models of biomolecular circuits are important tools for the design of synthetic biology and molecular communication circuits. The information content of typical time-lapse single-cell data for the inference of kinetic parameters is not only limited by measurement uncertainty and intrinsic stochasticity, but also by the employed perturbations. Novel microfluidic devices enable the synthesis of temporal chemical concentration profiles. The informativeness of a perturbation can be quantified based on mutual information. We propose an approximate method to perform optimal experimental design of such perturbation profiles. To estimate the mutual information we perform a multivariate log-normal approximation of the joint distribution over parameters and observations and scan the design space using Metropolis-Hastings sampling. The method is demonstrated by finding optimal perturbation sequences for synthetic case studies on a gene expression model with varying reporter characteristics.


翻译:生物分子电路的定量预测模型是设计合成生物学和分子通信电路的重要工具。典型的单细胞时间流数据用于动能参数推导的信息内容不仅受到测量不确定性和内在随机性的限制,而且受到使用的扰动作用的限制。新微氟化物装置能够合成时间化学浓度剖面。扰动的丰富性可以在相互信息的基础上加以量化。我们提出了一种近似方法,用于对此类扰动剖面进行最佳的实验设计。我们用多种变量对参数和观测进行联合分布的逻辑-常态近似,并利用Metropolis-Hasting取样对设计空间进行扫描。该方法的证明是找到具有不同报告方特性的基因表达模型的合成案例研究的最佳扰动序列。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
50+阅读 · 2020年12月14日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月5日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员