Quantitatively predictive models of biomolecular circuits are important tools for the design of synthetic biology and molecular communication circuits. The information content of typical time-lapse single-cell data for the inference of kinetic parameters is not only limited by measurement uncertainty and intrinsic stochasticity, but also by the employed perturbations. Novel microfluidic devices enable the synthesis of temporal chemical concentration profiles. The informativeness of a perturbation can be quantified based on mutual information. We propose an approximate method to perform optimal experimental design of such perturbation profiles. To estimate the mutual information we perform a multivariate log-normal approximation of the joint distribution over parameters and observations and scan the design space using Metropolis-Hastings sampling. The method is demonstrated by finding optimal perturbation sequences for synthetic case studies on a gene expression model with varying reporter characteristics.
翻译:生物分子电路的定量预测模型是设计合成生物学和分子通信电路的重要工具。典型的单细胞时间流数据用于动能参数推导的信息内容不仅受到测量不确定性和内在随机性的限制,而且受到使用的扰动作用的限制。新微氟化物装置能够合成时间化学浓度剖面。扰动的丰富性可以在相互信息的基础上加以量化。我们提出了一种近似方法,用于对此类扰动剖面进行最佳的实验设计。我们用多种变量对参数和观测进行联合分布的逻辑-常态近似,并利用Metropolis-Hasting取样对设计空间进行扫描。该方法的证明是找到具有不同报告方特性的基因表达模型的合成案例研究的最佳扰动序列。