The correct evaluation of the reproductive number $R$ for COVID-19 -- which characterizes the average number of secondary cases generated by each typical primary case -- is central in the quantification of the potential scope of the pandemic and the selection of an appropriate course of action. In most models, $R$ is modeled as a universal constant for the virus across outbreak clusters and individuals -- effectively averaging out the inherent variability of the transmission process due to varying individual contact rates, population densities, demographics, or temporal factors amongst many. Yet, due to the exponential nature of epidemic growth, the error due to this simplification can be rapidly amplified and lead to inaccurate predictions and/or risk evaluation. From the statistical modeling perspective, the magnitude of the impact of this averaging remains an open question: how can this intrinsic variability be percolated into epidemic models, and how can its impact on uncertainty quantification and predictive scenarios be better quantified? In this paper, we propose to study this question through a Bayesian perspective, creating a bridge between the agent-based and compartmental approaches commonly used in the literature. After deriving a Bayesian model that captures at scale the heterogeneity of a population and environmental conditions, we simulate the spread of the epidemic as well as the impact of different social distancing strategies, and highlight the strong impact of this added variability on the reported results. We base our discussion on both synthetic experiments -- thereby quantifying of the reliability and the magnitude of the effects -- and real COVID-19 data.
翻译:对COVID-19的生殖量数字的正确评价 -- -- COVID-19是每个典型主要病例产生的第二例病例的平均数目的特征 -- -- 在量化这一大流行病的潜在范围和选择适当行动方针方面至关重要。在大多数模型中,美元是作为各种爆发的疾病和个人的病毒的普遍常数来模拟的 -- -- 有效地平均了传播过程的内在变异性,因为不同的个人接触率、人口密度、人口统计或许多人之间的时间因素各不相同。然而,由于流行病增长的指数性性质,由于这种简化造成的错误可以迅速扩大,导致不准确的预测和/或风险评估。从统计模型的角度看,这种平均影响的规模仍然是个未解决的问题:这种内在的变异性如何渗透到流行病模式中,如何更好地量化其对不确定性的量化和预测假设情景的影响?在本文件中,我们提议从巴耶斯角度研究这一问题,在文献中常用的以代理人为基础的方法和分层方法之间搭桥,在分析一种贝斯模型之后,从规模上得出了准确的预测和/或风险评价。从统计模型的角度来看,这种平均影响的规模而言,这种变化的规模影响的规模仍然是一个问题的一个问题:这种内在的变异性变化如何将其作为人口和变异性分析基础,从而反映了我们所报告的人口和社会结果的不稳定性结果的不稳定性的结果。