Due to the lack of human resources for mental health support, there is an increasing demand for employing conversational agents for support. Recent work has demonstrated the effectiveness of dialogue models in providing emotional support. As previous studies have demonstrated that seekers' persona is an important factor for effective support, we investigate whether there are benefits to modeling such information in dialogue models for support. In this paper, our empirical analysis verifies that persona has an important impact on emotional support. Therefore, we propose a framework for dynamically inferring and modeling seekers' persona. We first train a model for inferring the seeker's persona from the conversation history. Accordingly, we propose PAL, a model that leverages persona information and, in conjunction with our strategy-based controllable generation method, provides personalized emotional support. Automatic and manual evaluations demonstrate that our proposed model, PAL, achieves state-of-the-art results, outperforming the baselines on the studied benchmark. Our code and data are publicly available at https://github.com/chengjl19/PAL.
翻译:由于缺乏心理健康支助的人力资源,对使用对话代理人的支持的需求日益增加。最近的工作表明对话模式在提供情感支持方面的有效性。正如以往的研究已经表明,寻求者的个人是有效支持的一个重要因素,我们调查在对话支持模式中建模这类信息是否有益处。在本文件中,我们的实证分析证实,人的身份对情感支持有重要影响。因此,我们提议了一个动态推论和模拟寻求者个人的框架。我们首先培训了一个模型,从对话史中推断寻求者的个人。因此,我们提出PAL,这是一个利用人的信息的模型,与我们基于战略的可控的一代方法一道,提供个性化情感支持。自动和人工评估表明,我们提议的模型PAL取得最新结果,超过了所研究的基准基准。我们的代码和数据可在https://github.com/chengjl19/PAL上公开查阅。