Accurate, long-term forecasting of human pedestrian trajectories in highly dynamic and interactive scenes is a long-standing challenge. Recent advances in using data-driven approaches have achieved significant improvements in terms of prediction accuracy. However, the lack of group-aware analysis has limited the performance of forecasting models. This is especially apparent in highly populated scenes, where pedestrians are moving in groups and the interactions between groups are extremely complex and dynamic. In this paper, we present Grouptron, a multi-scale dynamic forecasting framework that leverages pedestrian group detection and utilizes individual-level, group-level, and scene-level information for better understanding and representation of the scenes. Our approach employs spatio-temporal clustering algorithms to identify pedestrian groups, creates spatio-temporal graphs at the individual, group, and scene levels. It then uses graph neural networks to encode dynamics at different scales and incorporates encoding across different scales for trajectory prediction. We carried out extensive comparisons and ablation experiments to demonstrate the effectiveness of our approach. Our method achieves 9.3% decrease in final displacement error (FDE) compared with state-of-the-art methods on ETH/UCY benchmark datasets, and 16.1% decrease in FDE in more crowded scenes where extensive human group interactions are more frequently present.


翻译:在高度动态和互动的场景中,人类行人行道轨迹的准确、长期预测是一个长期的挑战。在使用数据驱动方法方面最近取得的进展在预测准确性方面取得了显著的改进。然而,缺乏群体意识分析限制了预测模型的性能。这在人口稠密的场景中特别明显,行人以群体方式移动,各群体之间的相互作用极为复杂和动态。在本文件中,我们介绍GroupTron,一个利用行人群体探测和利用个人、群体一级和场景一级信息的多尺度动态预测框架,以更好地了解和展示场景。我们的方法采用时空组合算法来识别行人群体,在个人、群体和场景一级创建时空图,从而在个人、群体和场景一级创建时空图。然后,它使用图形神经网络来解析不同尺度的动态,并纳入不同尺度的编码,以显示我们的方法的有效性。我们的方法实现了最后流离失所错误(FDE)的9.3%的减少率,而目前FDE1 和FAS-D-CS-B-B-LM 的更密集的模型中的数据正在不断下降。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【图与几何深度学习】Graph and geometric deep learning,49页ppt
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月4日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月4日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员