In this paper we address the multi-agent collaborative object transportation problem in a partially known environment with obstacles under a specified goal condition. We propose a leader follower approach for two mobile manipulators collaboratively transporting an object along specified desired trajectories. The proposed approach treats the mobile manipulation system as two independent subsystems: a mobile platform and a manipulator arm and uses their kinematics model for trajectory tracking. In this work we considered that the mobile platform is subject to non-holonomic constraints, with a manipulator carrying a rigid load. The desired trajectories of the end points of the load are obtained from Probabilistic RoadMap-based planning approach. Our method combines Proportional Navigation Guidance-based approach with a proposed Stop-and-Sync algorithm to reach sufficiently close to the desired trajectory, the deviation due to the non-holonomic constraints is compensated by the manipulator arm. A leader follower approach for computing inverse kinematics solution for the position of the end-effector of the manipulator arm is proposed to maintain the load rigidity. Further, we compare the proposed approach with other approaches to analyse the efficacy of our algorithm.


翻译:在本文中,我们针对在存在障碍物的部分已知环境下的多智能体协作物体运输问题,提出了一种领航追随方法,以满足特定的目标条件。我们提出了一种针对两个移动机械手协同沿着指定的期望轨迹运输物体的领航追随方法。所提出的方法将移动操纵系统视为两个独立的子系统:移动平台和机械臂,并使用它们的运动学模型进行轨迹跟踪。在这项工作中,我们认为移动平台受到非完整约束的影响,且机械臂携带刚性负载。载荷端点的期望轨迹是从基于概率路径图规划方法中获得的。我们的方法将比例导航制导方法与提出的停止和同步算法相结合,以足够接近期望轨迹,由于非完整约束引起的偏差由机械臂补偿。针对计算机械臂末端效应器位置的逆运动学解的领航追随方法被提出以保持负载刚度。此外,我们将所提出的方法与其他方法进行比较以分析我们算法的有效性。

0
下载
关闭预览

相关内容

机器学习顶会ICML2022接受论文列表!1235篇论文都在这了!
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员