The availability of training data is one of the main limitations in deep learning applications for medical imaging. Data augmentation is a popular approach to overcome this problem. A new approach is a Machine Learning based augmentation, in particular usage of Generative Adversarial Networks (GAN). In this case, GANs generate images similar to the original dataset so that the overall training data amount is bigger, which leads to better performance of trained networks. A GAN model consists of two networks, a generator and a discriminator interconnected in a feedback loop which creates a competitive environment. This work is a continuation of the previous research where we trained StyleGAN2-ADA by Nvidia on the limited COVID-19 chest X-ray image dataset. In this paper, we study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples. Two datasets are considered, one with 1000 images per class (4000 images in total) and the second with 500 images per class (2000 images in total). We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems. We compare the quality of the GAN-based augmentation approach to two different approaches (classical augmentation and no augmentation at all) by employing transfer learning-based classification of COVID-19 chest X-ray images. The results are quantified using different classification quality metrics and compared to the results from the literature. The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets. The correlation between the size of the original dataset and the quality of classification is visible independently from the augmentation approach.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员