We define a class of invariants, which we call homological invariants, for persistence modules over a finite poset. Informally, a homological invariant is one that respects some exact structure and takes values in the free abelian group generated by a finite set of indecomposable modules. We focus in particular on groups generated by "spread modules", which are sometimes called "interval modules" in the persistence theory literature. We show that both the dimension vector and rank invariant are equivalent to homological invariants taking values in groups generated by spread modules. We also show that that the free abelian group generated by the "single-source" spread modules gives rise to a new invariant which is finer than the rank invariant.


翻译:我们定义了一个变量类别, 我们称之为“ 单变量 ”, 指持久性模块。 非正式地说, 单变量是一个尊重某种精确结构并吸收由一组不易分解模块产生的自由ABelian群落中的值的元素。 我们特别侧重于由“ 分散模块” 产生的群落, 这些模块有时在持久性理论文献中被称为“ 互换模块 ” 。 我们显示, 维量矢量和等值都相当于同性变量, 吸收分布模块产生的群落中的值。 我们还表明, “ 单源源” 扩散模块产生的自由ABelian群产生了一种新的变量, 其优于差异的等级 。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
78+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
251+阅读 · 2020年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月15日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员