We define a class of invariants, which we call homological invariants, for persistence modules over a finite poset. Informally, a homological invariant is one that respects some exact structure and takes values in the free abelian group generated by a finite set of indecomposable modules. We focus in particular on groups generated by "spread modules", which are sometimes called "interval modules" in the persistence theory literature. We show that both the dimension vector and rank invariant are equivalent to homological invariants taking values in groups generated by spread modules. We also show that that the free abelian group generated by the "single-source" spread modules gives rise to a new invariant which is finer than the rank invariant.
翻译:我们定义了一个变量类别, 我们称之为“ 单变量 ”, 指持久性模块。 非正式地说, 单变量是一个尊重某种精确结构并吸收由一组不易分解模块产生的自由ABelian群落中的值的元素。 我们特别侧重于由“ 分散模块” 产生的群落, 这些模块有时在持久性理论文献中被称为“ 互换模块 ” 。 我们显示, 维量矢量和等值都相当于同性变量, 吸收分布模块产生的群落中的值。 我们还表明, “ 单源源” 扩散模块产生的自由ABelian群产生了一种新的变量, 其优于差异的等级 。