We show $\textsf{EOPL}=\textsf{PLS}\cap\textsf{PPAD}$. Here the class $\textsf{EOPL}$ consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubacek and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse $\textsf{CLS}=\textsf{PLS}\cap\textsf{PPAD}$ by Fearnley et al. (STOC 2021). We also prove a companion result $\textsf{SOPL}=\textsf{PLS}\cap\textsf{PPADS}$, where $\textsf{SOPL}$ is the class associated with the Sink-of-Potential-Line problem.


翻译:我们在此显示 $\ textsf{EOPL} textsf{PLS{cap\ textsf{PPAD}$。 类中$\ textsf{EOPL}$ 包括所有搜索问题, 这些问题会降低到功能- 线端问题, 这是Hubacek 和 Yogev (SICOMP 2020) 和 Fearnley 等人 (JCSS 2020) 的作品中引入的。 特别是, 我们的结果提供了一个新的更简单的证据, 证明Fafrenley 等人(STOC 2021) 的突破性崩溃 $ ($\ textsf{SOPLZ} textsf{PLS\cap\ textsf{PPADS} $。 其中$\ textsf{SOPL} 是Sink- Potential- Line 问题的相关类别。

0
下载
关闭预览

相关内容

该杂志包含了计算机科学和非数值计算的数学和形式方面的研究文章。主题包括分析和设计算法、数据结构、计算复杂性、计算代数、组合数学和图论计算几何、计算几何、计算机器人学、编程语言的数学方面、人工智能、计算学习、数据库、信息检索、密码学、网络、分布式计算、并行算法和计算机体系结构。官网链接:https://epubs.siam.org/journal/smjcat
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
124+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
124+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员