The spread of an epidemic is often modeled by an SIR random process on a social network graph. The MinINF problem for optimal social distancing involves minimizing the expected number of infections, when we are allowed to break at most $B$ edges; similarly the MinINFNode problem involves removing at most $B$ vertices. These are fundamental problems in epidemiology and network science. While a number of heuristics have been considered, the complexity of these problems remains generally open. In this paper, we present two bicriteria approximation algorithms for MinINF, which give the first non-trivial approximations for this problem. The first is based on the cut sparsification result of Karger \cite{karger:mathor99}, and works when the transmission probabilities are not too small. The second is a Sample Average Approximation (SAA) based algorithm, which we analyze for the Chung-Lu random graph model. We also extend some of our results to tackle the MinINFNode problem.
翻译:流行病的传播往往以社会网络图上的SIR随机过程为模型。 最佳社会偏移的MinINF问题涉及最大限度地减少预期的感染人数, 当我们被允许最多打破$B$边缘时; 同样, MinINFNode问题涉及消除最多$B$的脊椎。 这些是流行病学和网络科学中的根本问题。 虽然已经考虑过一些休眠学问题,但这些问题的复杂性一般仍然未解决。 在本文中, 我们为 MinINF 提供了两种双标准近似算法, 给这个问题提供了第一个非三维近似值。 第一个基于Karger\ cite{kar{kar{kar:mathor99} 的剪切擦结果, 当传输概率不小时起作用。 第二个是基于样本的平均吸附算法, 我们为 Chung- Lu 随机图形模型分析它。 我们还扩展了我们的一些结果, 以解决 MinINFNode 问题 。