We present the possibilities provided by the MathPartner service of calculating definite and indefinite integrals. MathPartner contains software implementation of the Risch algorithm and provides users with the ability to compute antiderivatives for elementary functions. Certain integrals, including improper integrals, can be calculated using numerical algorithms. In this case, every user has the ability to indicate the required accuracy with which he needs to know the numerical value of the integral. We highlight special functions allowing us to calculate complete elliptic integrals. These include functions for calculating the arithmetic-geometric mean and the geometric-harmonic mean, which allow us to calculate the complete elliptic integrals of the first kind. The set also includes the modified arithmetic-geometric mean, proposed by Semjon Adlaj, which allows us to calculate the complete elliptic integrals of the second kind as well as the circumference of an ellipse. The Lagutinski algorithm is of particular interest. For given differentiation in the field of bivariate rational functions, one can decide whether there exists a rational integral. The algorithm is based on calculating the Lagutinski determinant. Mikhail Lagutinski (1871--1915) had worked at Kharkiv (Ukraine). This year we are celebrating his 150th anniversary.
翻译:我们展示了数学伙伴公司计算固定和不定期整体体的可能性。 MathPartner 提供了计算固定和不定期整体体的软件。 MathPartner 包含 Risch 算法的软件实施, 并且为用户提供了计算基本功能的反流体积的能力。 某些整体体, 包括不适当的整体体, 可以使用数字算法来计算。 在此情况下, 每个用户都有能力表明他需要了解整体体数值的准确性。 我们突出了允许我们计算完整的椭圆体积分数的特殊功能。 其中包括计算计算计算算数- 测法平均值和几何- 调法平均值的功能, 从而使我们能够计算出第一种类型的完全的椭圆体积体积。 该数据集还包括由Semjon Adlaj 提出的经修改的算算法- 。 这让我们能够计算出第二种整体体积体积的完整体积体积, 以及椭圆体值的偏差。 Lagutinski 算法具有特别的兴趣。 在计算数学- 理性函数领域的差异下, 可以决定是否存在一个合理的整体体积分法, 。 该算法是根据计算 150-19 年的基基基基基基基基基基基尼 。