A major goal of materials design is to find material structures with desired properties and in a second step to find a processing path to reach one of these structures. In this paper, we propose and investigate a deep reinforcement learning approach for the optimization of processing paths. The goal is to find optimal processing paths in the material structure space that lead to target-structures, which have been identified beforehand to result in desired material properties. As the relation between properties and structures is generally non-unique, typically a whole set of target-structures can be identified, that lead to desired properties. Our proposed method optimizes processing paths from a start structure to one of these equivalent target-structures. The algorithm learns to find near-optimal paths by interacting with the structure-generating process. It is guided by structure descriptors as process state features and a reward signal, which is formulated based on a distance function in the structure space. The model-free reinforcement learning algorithm learns through trial and error while interacting with the process and does not rely on a priori sampled processing data. We instantiate and evaluate the proposed methods by optimizing paths of a generic metal forming process.


翻译:材料设计的一个主要目标是寻找具有理想特性的材料结构,并在第二步寻找达到其中一种结构的加工路径。在本文件中,我们建议并调查一种深度强化学习方法,以优化加工路径。目标是在材料结构空间找到导致目标结构的最佳处理路径,这些空间事先已经确定,以产生预期物质属性。由于属性和结构之间的关系一般不独特,通常可以确定整套目标结构,从而导致想要的属性。我们提议的方法优化了从起始结构到这些同等目标结构之一的处理路径。算法通过与结构生成过程的相互作用,学会找到接近最佳的路径。它以结构描述器为指导,作为过程状态特征和奖励信号,根据结构空间的远程功能制定。无模型强化学习算法通过试验和错误学习,同时与进程互动,不依赖先前抽样的处理数据。我们通过优化一般金属形成过程的路径,对拟议方法进行即时和评估。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员