Linear Mixed-Effects (LME) models are a fundamental tool for modeling clustered data, including cohort studies, longitudinal data analysis, and meta-analysis. The design and analysis of variable selection methods for LMEs is considerably more difficult than for linear regression because LME models are nonlinear. The approach considered here is motivated by a recent method for sparse relaxed regularized regression (SR3) for variable selection in the context of linear regression. The theoretical underpinnings for the proposed extension to LMEs are developed, including consistency results, variational properties, implementability of optimization methods, and convergence results. In particular we provide convergence analyses for a basic implementation of SR3 for LME (called MSR3) and an accelerated hybrid algorithm (called MSR3-fast). Numerical results show the utility and speed of these algorithms on realistic simulated datasets. The numerical implementations are available in an open source python package pysr3.
翻译:线性混合效应模型(LME)是模拟群集数据的基本工具,包括群集研究、纵向数据分析和元分析。LME变量选择方法的设计和分析比线性回归要困难得多,因为LME模型是非线性回归。这里所考虑的方法的动机是,在线性回归的背景下,为选择变量而采用了一种最近采用的稀松放松的常规回归(SR3)方法。拟议扩展至LME的理论基础得到了开发,包括一致性结果、变异特性、优化方法的可执行性和趋同结果。特别是,我们为LMESR3(称为MSR3)和加速混合算法(称为MSR3-快)的基本实施提供了趋同分析。数字结果显示这些算法在现实模拟数据集中的效用和速度。数字实施可以在开放源 Python 软件包 pysr3 中找到。