We consider the problem of computing the Maximal Exact Matches (MEMs) of a given pattern $P[1..m]$ on a large repetitive text collection $T[1..n]$, which is represented as a (hopefully much smaller) run-length context-free grammar of size $g_{rl}$. We show that the problem can be solved in time $O(m^2 \log^\epsilon n)$, for any constant $\epsilon > 0$, on a data structure of size $O(g_{rl})$. Further, on a locally consistent grammar of size $O(\delta\log\frac{n}{\delta})$, the time decreases to $O(m\log m(\log m + \log^\epsilon n))$. The value $\delta$ is a function of the substring complexity of $T$ and $\Omega(\delta\log\frac{n}{\delta})$ is a tight lower bound on the compressibility of repetitive texts $T$, so our structure has optimal size in terms of $n$ and $\delta$. We extend our results to the problem of finding $q$-MEMs, which must appear at least $q$ times in $T$.
翻译:我们考虑在大型重复文本收藏中计算某种模式[1.m]$P[1.m]$[1.n]$[1.n]$的最大具体匹配(MEM)的问题,它代表着一种(希望大大小得多的)不长的无背景语法,其大小为$g ⁇ rl}美元。我们表明,对于任何恒定的美元($%2\log ⁇ epsilon n)来说,问题可以及时解决。对于任何恒定的美元($) > 0美元的数据结构来说,美元($O(g ⁇ r})美元。此外,对于本地一致的大小($($)[$(delta\log\g\g\g\frac{n=delta})$($))的语法,时间可以缩短为$(m\log m(m) +\log ⁇ cipslon n) 美元。 美元值是美元和美元($($(delta\\ grang)美元)美元($)的分数的函数。对于我们反复文本的最佳结构来说,我们必须在美元中找到美元($($)的大小。