We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unfied framework. We build on the Bayesian approximation error (BAE) framework, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.
翻译:我们考虑在模型不确定性下对巴伊西亚非线性问题进行最佳实验设计(OED),在模型不确定性的情况下,对巴伊西亚非线性问题进行最佳实验设计(OED),具体地说,我们考虑反向问题,其中,除了反向参数之外,管理PDE还包含次要不确定参数;我们侧重于无限维反向和次要参数的问题,为此类问题的最佳设计提供一个可缩放的计算框架;拟议方法使巴伊西亚非线性误差(OED)在一个不确定的框架内对巴伊西亚非线性问题进行最佳实验设计(OED),我们在巴伊斯偏向性误差(BAEE)框架的基础上,将模拟不确定性纳入贝伊斯反向问题的模型,以及无限巴伊斯非线性非线性反问题的A-最佳设计方法。具体地说,我们用一个高调的近似近似近似近似近似近似近似值来界定对此类问题的最佳设计;特别是,OEDD目标可以以成本来计算,在PDE解决方案的解决中,但不会随着离离离式的轨的轨法和次轨法的精确度方法的深度,我们使用的亚经度和亚地平面的模型的精确度,而形成一个双向优化的方法为我们的一个。