The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
翻译:深层学习模型(DL)的性能取决于标签的质量。 在某些地区, 人类标记员的参与可能会导致数据中的噪音。 当这些腐败标签被盲目地视为地面真理(GT)时, DL模型会出现性能缺陷。 本文展示了一种方法, 目的是在噪音标签出现的情况下学习自信模型。 这是结合对多个标记员的不确定性的估计来做的。 我们通过在分类器网络中添加导音或基于信息的定序器来强有力地估计仅给出的噪音标签的预测。 我们实验了一种响亮的MNIST、 CIFAR- 10 和 FMNIST数据集。 我们的实验结果显示了我们方法的稳健性, 因为它超越或与其他状态( SOTA) 方法相匹配。 此外, 我们评估了关于固化数据集的拟议方法, 那里的噪音类型和各种标记师的水平取决于输入图像的风格。 我们展示了我们的方法表现得非常好, 并且是在学习MIT、CIF-10 和FML 数据集中, 我们最后评估了我们如何用模型来预测其它的不确定性。