Solving the indefinite Helmholtz equation is not only crucial for the understanding of many physical phenomena but also represents an outstandingly-difficult benchmark problem for the successful application of numerical methods. Here we introduce a new approach for evolving efficient preconditioned iterative solvers for Helmholtz problems with multi-objective grammar-guided genetic programming. Our approach is based on a novel context-free grammar, which enables the construction of multigrid preconditioners that employ a tailored sequence of operations on each discretization level. To find solvers that generalize well over the given domain, we propose a custom method of successive problem difficulty adaption, in which we evaluate a preconditioner's efficiency on increasingly ill-conditioned problem instances. We demonstrate our approach's effectiveness by evolving multigrid-based preconditioners for a two-dimensional indefinite Helmholtz problem that outperform several human-designed methods for different wavenumbers up to systems of linear equations with more than a million unknowns.
翻译:解决无限期的Helmholtz 等式不仅对理解许多物理现象至关重要,而且对于成功应用数字方法来说,是一个非常困难的基准问题。 我们在这里引入了一种新的方法,通过多目标语法引导基因程序,为Helmholtz问题开发高效的、有先决条件的迭代解答器。 我们的方法基于一种没有背景的新颖的语法,它使得能够构建多网格先决条件,在每一个离散级别上采用量身定做的操作序列。 要找到在给定域上非常普及的解答器, 我们建议了一种自定义的连续问题适应困难的方法, 在这种方法中,我们评估了对日益受困问题实例的前提条件的效率。 我们通过开发基于多网基的双维的无线 Helmholtz 问题, 来证明我们的方法的有效性,它超越了对不同波数的人类设计方法, 直径直线方形数系统, 超过100万个未知数。