We propose a new class of parameterizations for spatio-temporal point processes which leverage Neural ODEs as a computational method and enable flexible, high-fidelity models of discrete events that are localized in continuous time and space. Central to our approach is a combination of recurrent continuous-time neural networks with two novel neural architectures, i.e., Jump and Attentive Continuous-time Normalizing Flows. This approach allows us to learn complex distributions for both the spatial and temporal domain and to condition non-trivially on the observed event history. We validate our models on data sets from a wide variety of contexts such as seismology, epidemiology, urban mobility, and neuroscience.
翻译:我们建议对时空时空点进程进行新的参数参数化分类,将神经代码作为一种计算方法,并能够对连续时间和空间中本地的离散事件建立灵活、高度忠诚的模型。我们方法的核心是将经常性的连续时神经网络与两种新型神经结构(即跳动和加速连续时间流)结合起来。这个方法使我们能够学习空间和时空域的复杂分布,并以所观察到的事件史为非三角条件。我们验证了我们从地震学、流行病学、城市流动性和神经科学等广泛环境中建立数据集的模型。