Semantic segmentation using convolutional neural networks (CNN) is a crucial component in image analysis. Training a CNN to perform semantic segmentation requires a large amount of labeled data, where the production of such labeled data is both costly and labor intensive. Semi-supervised learning algorithms address this issue by utilizing unlabeled data and so reduce the amount of labeled data needed for training. In particular, data augmentation techniques such as CutMix and ClassMix generate additional training data from existing labeled data. In this paper we propose a new approach for data augmentation, termed ComplexMix, which incorporates aspects of CutMix and ClassMix with improved performance. The proposed approach has the ability to control the complexity of the augmented data while attempting to be semantically-correct and address the tradeoff between complexity and correctness. The proposed ComplexMix approach is evaluated on a standard dataset for semantic segmentation and compared to other state-of-the-art techniques. Experimental results show that our method yields improvement over state-of-the-art methods on standard datasets for semantic image segmentation.
翻译:使用 convolutional 神经网络( CNN) 的语义分解是图像分析中的一个关键组成部分。 培训CNN 进行语义分解需要大量标签数据,因为制作这种标签数据既昂贵又耗费大量人力。 半监督的学习算法利用未贴标签的数据来解决这个问题,从而减少培训所需的标签数据数量。 特别是, CutMix 和 SulleMix 等数据增强技术从现有标签数据中产生额外的培训数据。 本文中我们提出了一种数据增强的新方法, 叫做 ComplexMix, 其中包括CutMix 和 Sleg Mix 的方方面面, 并改进了性能。 拟议的方法有能力在试图进行语义校正和处理复杂性和正确性之间的折合时控制扩大数据的复杂性。 拟议的复杂混合方法在用于语义分解和其他状态技术的标准数据集上进行了评估。 实验结果显示, 我们的方法比语义图像分解的标准数据设置的状态方法有所改进。