Reconfigurable Intelligent Surfaces (RISs) allow to control the propagation environment in wireless networks by properly tuning multiple reflecting elements. Traditionally, RISs have been realized through single connected reconfigurable impedance networks, in which each RIS element is independently controlled by an impedance connected to ground. In a recent work, this architecture has been extended by realizing more efficient RISs with group and fully connected reconfigurable impedance networks. However, impedance networks tunable with arbitrary precision are hard to realize in practice. In this paper, we propose a practical RIS design strategy based on reconfigurable impedance networks with discrete values. Besides, we address the problem of how to group the RIS elements in group connected architectures. We optimize single, group, and fully connected architectures considering finite-resolution elements, and we compare them in terms of received signal power. Through Monte Carlo simulations, supported by theoretical justifications, we show that only a few resolution bits per reconfigurable impedance are sufficient to achieve the performance upper bound. In particular, while four resolution bits are needed to reach the upper bound in single connected architectures, only a single resolution bit is sufficient in fully connected ones, simplifying significantly the future development of these promising RIS architectures.
翻译:重新配置的智能表面(RIS)允许通过对多个反射元素进行适当调整来控制无线网络的传播环境。 传统上,RIS是通过单一连接的可调整阻力网络实现的, 每一个RIS元素都受到与地面相连的阻力的单独控制。 在最近的一项工作中,这一结构通过与群体和完全连接的阻力网络实现更有效的RIS和完全连接的阻力网络的扩大而得以扩展。 然而, 在实践中很难实现具有任意精确性的阻力网络。 在本文件中,我们提出了一个基于可调整的阻力网络的实用的RIS设计战略。 此外,我们解决了如何将RIS元素分组到集团连接的结构中的问题。 我们优化了考虑有限分辨率元素的单一、组合和完全连接的结构,并在接收信号能量方面对它们进行比较。 通过蒙特卡洛的模拟,在理论上的理由的支持下,我们表明只有少量的可调整阻力网络的分辨率足以达到性能上限值。 特别是, 四分解点需要四个分辨率的比方才能在有独立价值的阻隔开的阻力结构中达到组群状的上界限。 我们优化了这些有希望的单一连接的单一结构, 只需要一个完整的单一的单一的模型才能充分简化未来的结构。