Humans leverage multiple sensor modalities when interacting with objects and discovering their intrinsic properties. Using the visual modality alone is insufficient for deriving intuition behind object properties (e.g., which of two boxes is heavier), making it essential to consider non-visual modalities as well, such as the tactile and auditory. Whereas robots may leverage various modalities to obtain object property understanding via learned exploratory interactions with objects (e.g., grasping, lifting, and shaking behaviors), challenges remain: the implicit knowledge acquired by one robot via object exploration cannot be directly leveraged by another robot with different morphology, because the sensor models, observed data distributions, and interaction capabilities are different across these different robot configurations. To avoid the costly process of learning interactive object perception tasks from scratch, we propose a multi-stage projection framework for each new robot for transferring implicit knowledge of object properties across heterogeneous robot morphologies. We evaluate our approach on the object-property recognition and object-identity recognition tasks, using a dataset containing two heterogeneous robots that perform 7,600 object interactions. Results indicate that knowledge can be transferred across robots, such that a newly-deployed robot can bootstrap its recognition models without exhaustively exploring all objects. We also propose a data augmentation technique and show that this technique improves the generalization of models. We release our code and datasets, here: https://github.com/gtatiya/Implicit-Knowledge-Transfer.
翻译:人类在与天体互动并发现其内在特性时,利用多种传感器模式。仅使用视觉模式不足以在天体属性(例如,两个框中的哪一部分更重)背后产生直觉,因此也有必要考虑非视觉模式,例如触觉和听觉。虽然机器人可以利用多种模式,通过与天体(例如,掌握、提升和摇晃行为)进行知情探索性互动,从而获得物体属性的理解,但挑战依然存在:一个机器人通过天体勘探获得的隐性知识,不能由另一个具有不同形态的机器人直接利用,因为传感器模型、观测到的数据发布和互动能力在这些不同的机器人配置中各不相同。为了避免从零开始学习交互式天体认知任务等费用高昂的过程,我们为每个新机器人提出了一个多阶段的投影框架,以通过与天体(例如,掌握、提升、提升和摇晃动)的探索天体属性特性。我们用包含两个可进行天体互动的混合机器人的数据集来评估我们的方法。结果显示,知识可以跨越机器人物体的相互转移,这样可以将数据模型转换为新版本/升级的机器人技术,这样可以改进我们的数据系统。