Humans leverage multiple sensor modalities when interacting with objects and discovering their intrinsic properties. Using the visual modality alone is insufficient for deriving intuition behind object properties (e.g., which of two boxes is heavier), making it essential to consider non-visual modalities as well, such as the tactile and auditory. Whereas robots may leverage various modalities to obtain object property understanding via learned exploratory interactions with objects (e.g., grasping, lifting, and shaking behaviors), challenges remain: the implicit knowledge acquired by one robot via object exploration cannot be directly leveraged by another robot with different morphology, because the sensor models, observed data distributions, and interaction capabilities are different across these different robot configurations. To avoid the costly process of learning interactive object perception tasks from scratch, we propose a multi-stage projection framework for each new robot for transferring implicit knowledge of object properties across heterogeneous robot morphologies. We evaluate our approach on the object-property recognition and object-identity recognition tasks, using a dataset containing two heterogeneous robots that perform 7,600 object interactions. Results indicate that knowledge can be transferred across robots, such that a newly-deployed robot can bootstrap its recognition models without exhaustively exploring all objects. We also propose a data augmentation technique and show that this technique improves the generalization of models. We release our code and datasets, here: https://github.com/gtatiya/Implicit-Knowledge-Transfer.


翻译:人类在与天体互动并发现其内在特性时,利用多种传感器模式。仅使用视觉模式不足以在天体属性(例如,两个框中的哪一部分更重)背后产生直觉,因此也有必要考虑非视觉模式,例如触觉和听觉。虽然机器人可以利用多种模式,通过与天体(例如,掌握、提升和摇晃行为)进行知情探索性互动,从而获得物体属性的理解,但挑战依然存在:一个机器人通过天体勘探获得的隐性知识,不能由另一个具有不同形态的机器人直接利用,因为传感器模型、观测到的数据发布和互动能力在这些不同的机器人配置中各不相同。为了避免从零开始学习交互式天体认知任务等费用高昂的过程,我们为每个新机器人提出了一个多阶段的投影框架,以通过与天体(例如,掌握、提升、提升和摇晃动)的探索天体属性特性。我们用包含两个可进行天体互动的混合机器人的数据集来评估我们的方法。结果显示,知识可以跨越机器人物体的相互转移,这样可以将数据模型转换为新版本/升级的机器人技术,这样可以改进我们的数据系统。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
35+阅读 · 2021年7月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
7+阅读 · 2022年10月21日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
专知会员服务
35+阅读 · 2021年7月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员