With the growing number of published functional magnetic resonance imaging (fMRI) studies, meta-analysis databases and models have become an integral part of brain mapping research. Coordinate-based meta-analysis (CBMA) databases are built by automatically extracting both coordinates of reported peak activations and term associations using natural language processing (NLP) techniques. Solving term-based queries on these databases make it possible to obtain statistical maps of the brain related to specific cognitive processes. However, with tools like Neurosynth, only singleterm queries lead to statistically reliable results. When solving richer queries, too few studies from the database contribute to the statistical estimations. We design a probabilistic domain-specific language (DSL) standing on Datalog and one of its probabilistic extensions, CP-Logic, for expressing and solving rich logic-based queries. We encode a CBMA database into a probabilistic program. Using the joint distribution of its Bayesian network translation, we show that solutions of queries on this program compute the right probability distributions of voxel activations. We explain how recent lifted query processing algorithms make it possible to scale to the size of large neuroimaging data, where state of the art knowledge compilation (KC) techniques fail to solve queries fast enough for practical applications. Finally, we introduce a method for relating studies to terms probabilistically, leading to better solutions for conjunctive queries on smaller databases. We demonstrate results for two-term conjunctive queries, both on simulated meta-analysis databases and on the widely-used Neurosynth database.


翻译:随着已公布的功能磁共振成像(fMRI)研究数量的不断增加,元分析数据库和模型已成为大脑绘图研究的一个组成部分。基于协调的元分析数据库通过自动提取所报告的峰值激活和术语关联的坐标,使用自然语言处理技术(NLP),建立基于协调的元分析数据库。在这些数据库中解决基于术语的查询使得有可能获得与具体认知过程有关的大脑统计地图。然而,利用Neurosynth等工具,只有单期查询才能得出统计上可靠的结果。当解决更丰富的查询时,数据库中只有很少的研究有助于统计估计。我们设计一种基于数据的概率的域特定语言(DSL),在数据仪上和其概率扩展的扩展之一,即CP-Logic,用于表达和解决丰富的基于逻辑的查询。我们将CBMA数据库编码成一个与具体认知过程有关的预测程序。使用其Bayesian网络翻译的联合分布,我们展示了这个程序查询的解决方案的解决方案可以计算到大量氧化物的正确概率分布。我们解释了最近如何解解剖的神经级数据解算方法,最终可以用来将数据推算成一个快速的系统。我们是如何在快速解方法上进行快速解解算,我们是如何在快速解算算法的。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员