Multi-Agent Reinforcement Learning currently focuses on implementations where all data and training can be centralized to one machine. But what if local agents are split across multiple tasks, and need to keep data private between each? We develop the first application of Personalized Federated Hypernetworks (PFH) to Reinforcement Learning (RL). We then present a novel application of PFH to few-shot transfer, and demonstrate significant initial increases in learning. PFH has never been demonstrated beyond supervised learning benchmarks, so we apply PFH to an important domain: RL price-setting for energy demand response. We consider a general case across where agents are split across multiple microgrids, wherein energy consumption data must be kept private within each microgrid. Together, our work explores how the fields of personalized federated learning and RL can come together to make learning efficient across multiple tasks while keeping data secure.
翻译:多机构强化学习目前侧重于所有数据和培训可以集中到一台机器的实施工作。 但如果本地代理机构被分成多个任务,需要将数据保持各自之间的隐私? 我们开发了个人化联邦超网络(PFH)对强化学习(RL)的首次应用。 然后我们将个人化联邦网络(PFH)的新型应用用于几发传输,并展示了初始学习的显著增长。 个人化联邦学习(PFH)从未在监督的学习基准之外被展示出来,因此我们将PFH应用到一个重要领域:RL能源需求响应定价。 我们考虑了一个一般性案例,即代理机构在多个微网络之间分割,其中能源消费数据必须在每个微网络中保持私人化。 我们共同探索个人化联邦学习领域和RL如何在保持数据安全的同时,将个人化联邦学习领域结合起来,使多重任务变得高效。