We extend the recently introduced framework of metric distortion to multiwinner voting. In this framework, $n$ agents and $m$ alternatives are located in an underlying metric space. The exact distances between agents and alternatives are unknown. Instead, each agent provides a ranking of the alternatives, ordered from the closest to the farthest. Typically, the goal is to select a single alternative that approximately minimizes the total distance from the agents, and the worst-case approximation ratio is termed distortion. In the case of multiwinner voting, the goal is to select a committee of $k$ alternatives that (approximately) minimizes the total cost to all agents. We consider the scenario where the cost of an agent for a committee is her distance from the $q$-th closest alternative in the committee. We reveal a surprising trichotomy on the distortion of multiwinner voting rules in terms of $k$ and $q$: The distortion is unbounded when $q \leq k/3$, asymptotically linear in the number of agents when $k/3 < q \leq k/2$, and constant when $q > k/2$.


翻译:我们把最近引入的衡量扭曲框架扩大到多赢投票。在这个框架内,一美元代理和一百万美元替代方案位于一个基数空间中。代理和替代方案之间的准确距离不详。相反,每个代理提供从最接近到最远的替代方案排序。通常,目标是选择一种单一的替代方案,以尽可能减少与代理之间的总距离,而最差的近似比率则称为扭曲。在多赢者投票的情况下,目标是选择一个由一美元替代方案组成的委员会,以(约)将所有代理的总费用降到最低。我们考虑一个委员会的代理费用是她与委员会中第三种最接近的替代方案之间的距离。我们揭示了一个令人惊讶的三重选择方案,即多赢者投票规则的扭曲以美元和美元计数为美元计算:当美元=leq k/3,以美元计为直线,以美元计数的代理,以0.3美元计时即为线性线性。我们考虑了一个委员会的费用是她与委员会中第三种最接近的替代方案之间的距离。我们揭示了一个令人惊讶的三重的三重:在多赢者投票规则被扭曲时,即K/2美元为无约束。当代理人人数为0.0.0.3美元时,即无约束。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员