Many games often share common ideas or aspects between them, such as their rules, controls, or playing area. However, in the context of General Game Playing (GGP) for board games, this area remains under-explored. We propose to formalise the notion of "game concept", inspired by terms generally used by game players and designers. Through the Ludii General Game System, we describe concepts for several levels of abstraction, such as the game itself, the moves played, or the states reached. This new GGP feature associated with the ludeme representation of games opens many new lines of research. The creation of a hyper-agent selector, the transfer of AI learning between games, or explaining AI techniques using game terms, can all be facilitated by the use of game concepts. Other applications which can benefit from game concepts are also discussed, such as the generation of plausible reconstructed rules for incomplete ancient games, or the implementation of a board game recommender system.


翻译:许多游戏往往在它们之间有共同的想法或方面,如规则、控制或游戏区域。然而,在游戏游戏一般游戏游戏(GGP)中,这个区域仍然探索不足。我们提议正式确定游戏游戏游戏概念的概念,由游戏玩家和设计师通常使用的术语来启发。我们通过卢迪一般游戏系统描述若干层次的抽象概念,如游戏本身、游戏动作或所达到的状态。这个与游戏的润滑式代表相关的新的GGGP特性打开了许多新的研究线。创建超试剂选择器,在游戏之间转让AI学习,或使用游戏术语解释AI技术,都可以通过使用游戏概念而得到促进。也讨论了能够从游戏概念中受益的其他应用,例如为不完全的古游戏创造有说服力的重塑规则,或实施棋盘游戏推荐系统。

0
下载
关闭预览

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员