Graph neural networks (GNNs) have received tremendous attention due to their power in learning effective representations for graphs. Most GNNs follow a message-passing scheme where the node representations are updated by aggregating and transforming the information from the neighborhood. Meanwhile, they adopt the same strategy in aggregating the information from different feature dimensions. However, suggested by social dimension theory and spectral embedding, there are potential benefits to treat the dimensions differently during the aggregation process. In this work, we investigate to enable heterogeneous contributions of feature dimensions in GNNs. In particular, we propose a general graph feature gating network (GFGN) based on the graph signal denoising problem and then correspondingly introduce three graph filters under GFGN to allow different levels of contributions from feature dimensions. Extensive experiments on various real-world datasets demonstrate the effectiveness and robustness of the proposed frameworks.


翻译:大部分全球网点都采用信息传递方式,通过汇总和转换来自周边的信息来更新节点表达方式;同时,它们也采用相同的战略,汇总不同特征层面的信息;然而,根据社会层面理论和光谱嵌入法的建议,在聚合过程中,对不同层面的处理可能是有益的;在这项工作中,我们进行调查,使全球网点的特征层面能够做出不同的贡献;特别是,我们提议基于图表信号分辨问题的通用图形特征定位网络(GFGN),然后在GFGN下相应引入三个图形过滤器,允许不同特征层面的不同贡献水平;对各种真实世界数据集进行的广泛实验,表明拟议框架的有效性和稳健性。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员