Power decoding is a partial decoding paradigm for arbitrary algebraic geometry codes for decoding beyond half the minimum distance, which usually returns the unique closest codeword, but in rare cases fails to return anything. The original version decodes roughly up to the Sudan radius, while an improved version decodes up to the Johnson radius, but has so far been described only for Reed--Solomon and one-point Hermitian codes. In this paper we show how the improved version can be applied to any algebraic geometry code.
翻译:电源解码是任意代数几何参数编码的局部解码模式,用于解码超过最低距离的一半,通常返回唯一最接近的编码,但很少情况下无法归还任何东西。 原版本的解码大约可以返回苏丹半径,而改进版的解码可以达到约翰逊半径,但迄今为止只描述Reed-Solomon和一个百分点的Hermitian编码。 本文中我们展示了改进版如何应用到任何代数几何码。