COVID-19, a new strain of coronavirus disease, has been one of the most serious and infectious disease in the world. Chest CT is essential in prognostication, diagnosing this disease, and assessing the complication. In this paper, a multi-class COVID-19 CT segmentation is proposed aiming at helping radiologists estimate the extent of effected lung volume. We utilized four augmented pyramid networks on an encoder-decoder segmentation framework. Quadruple Augmented Pyramid Network (QAP-Net) not only enable CNN capture features from variation size of CT images, but also act as spatial interconnections and down-sampling to transfer sufficient feature information for semantic segmentation. Experimental results achieve competitive performance in segmentation with the Dice of 0.8163, which outperforms other state-of-the-art methods, demonstrating the proposed framework can segments of consolidation as well as glass, ground area via COVID-19 chest CT efficiently and accurately.


翻译:COVID-19是一种新的冠状病毒疾病,已成为世界上最严重的传染病之一。胸腔CT对于预测、诊断这一疾病和评估复杂程度至关重要。在本论文中,提出了多级COVID-19CT分割法,旨在帮助放射学家估计肺部影响的程度。我们利用了在编码器脱coder分解框架上的四大金字塔网络。四重增强的金字塔网络(QAP-Net)不仅使CNN能够从CT图像的变异大小中捕捉特征,而且还起到空间互联和下取样作用,以转移足够的特征信息,用于语义分解。实验结果在分解方面实现了与0.8163号骰子的竞争性性能,它超越了其他最先进的方法,表明拟议的框架能够通过COVID-19胸部CT高效和准确的组合部分以及玻璃、地面。

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
【CVPR2021】重新思考BiSeNet让语义分割模型速度起飞
专知会员服务
34+阅读 · 2021年5月5日
专知会员服务
61+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员