Continual learning is considered a promising step towards next-generation Artificial Intelligence (AI), where deep neural networks (DNNs) make decisions by continuously learning a sequence of different tasks akin to human learning processes. It is still quite primitive, with existing works focusing primarily on avoiding (catastrophic) forgetting. However, since forgetting is inevitable given bounded memory and unbounded task loads, 'how to reasonably forget' is a problem continual learning must address in order to reduce the performance gap between AIs and humans, in terms of 1) memory efficiency, 2) generalizability, and 3) robustness when dealing with noisy data. To address this, we propose a novel ScheMAtic memory peRsistence and Transience (SMART) framework for continual learning with external memory that builds on recent advances in neuroscience. The efficiency and generalizability are enhanced by a novel long-term forgetting mechanism and schematic memory, using sparsity and 'backward positive transfer' constraints with theoretical guarantees on the error bound. Robust enhancement is achieved using a novel short-term forgetting mechanism inspired by background information-gated learning. Finally, an extensive experimental analysis on both benchmark and real-world datasets demonstrates the effectiveness and efficiency of our model.
翻译:持续学习被认为是朝着下一代人工智能(AI)迈出的有希望的一步,在这个过程中,深神经网络(DNNS)通过不断学习一系列与人类学习过程相似的不同任务来作出决定。它仍然是相当原始的,现有的工作主要侧重于避免(灾难性)忘记。然而,由于忘却是不可避免的,给人留下的记忆和无限制的任务负荷是无法避免的,“如何合理忘记”是一个必须不断学习的问题,以便缩小AIs和人类之间在下列方面的绩效差距:1)记忆效率,2)一般可变性,3)处理噪音数据时的稳健性。为了解决这个问题,我们建议建立一个创新的ScheMAtic记忆和中继(SMART)框架,以外部记忆为基础不断学习,以神经科学的最新进步为基础。一个全新的长期忘却机制和感官记忆,“如何合理忘记”是一个问题,必须不断学习是一个必须解决的问题,以便减少AIs与人类之间在1)记忆效率、2)一般性和“后向积极的转移”的制约,在理论保证下,在处理噪音数据时能够实现强健健的增强。为了解决这个问题,我们利用由背景信息所启发而启发的短期忘忘忘机制,我们以历史资料化的模型和真实性学习效率进行广泛的实验性分析。最后,对世界数据效率进行了广泛的实验性分析。