Two reconstruction methods of Electrical Impedance Tomography (EIT) are numerically compared for nonsmooth conductivities in the plane based on the use of complex geometrical optics (CGO) solutions to D-bar equations involving the global uniqueness proofs for Calder\'on problem exposed in [Nachman; Annals of Mathematics 143, 1996] and [Astala and P\"aiv\"arinta; Annals of Mathematics 163, 2006]: the Astala-P\"aiv\"arinta theory-based "low-pass transport matrix method" implemented in [Astala et al.; Inverse Problems and Imaging 5, 2011] and the "shortcut method" which considers ingredients of both theories. The latter method is formally similar to the Nachman theory-based regularized EIT reconstruction algorithm studied in [Knudsen, Lassas, Mueller and Siltanen; Inverse Problems and Imaging 3, 2009] and several references from there. New numerical results are presented using parallel computation with size parameters larger than ever, leading mainly to two conclusions as follows. First, both methods can approximate piecewise constant conductivities better and better as the cutoff frequency increases, and there seems to be a Gibbs-like phenomenon producing ringing artifacts. Second, the transport matrix method loses accuracy away from a (freely chosen) pivot point located outside of the object to be studied, whereas the shortcut method produces reconstructions with more uniform quality.


翻译:电阻地形学(EIT)的两种重建方法在数字上对平面上非移动传导方法进行了数字比较,其基础是[Astala-P\"aiv\"arinta 理论基础的“低空运输矩阵方法”,在[Astala 和[Astala 和 P\"aiv\"arinta, 2006] 和[Nathman, 143, 1996] 和[Astala 和 P\"aiv\"arinta, 数学年鉴163, 2006] 和[Nachman, Astala- P\\"aiv\" 的“CGOGO, 使用复杂几何光学光学光学(CGO, CGO) 等方方方程式的复杂度证明: Calder\ “Calder” 和“shortcut 方法(Cogroup 方法),后者与[Knudsen, Las, Lass, Mueller和Siltanenen, 2009年] 所研究的理论基础和若干引用。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2019年3月14日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员