A fully convolutional autoencoder is developed for the detection of anomalies in multi-sensor vehicle drive-cycle data from the powertrain domain. Preliminary results collected on real-world powertrain data show that the reconstruction error of faulty drive cycles deviates significantly relative to the reconstruction of healthy drive cycles using the trained autoencoder. The results demonstrate applicability for identifying faulty drive-cycles, and for improving the accuracy of system prognosis and predictive maintenance in connected vehicles.
翻译:开发了完全进化自动编码器,以便从动力列车领域探测多传感器车辆驱动周期数据中的异常现象,从实际世界动力列车数据中收集的初步结果显示,与使用经过训练的自动编码器重建健康驱动周期相比,错误驱动周期的重建错误大相径庭。 结果表明,在识别有缺陷的驱动周期、提高系统预测准确性和相关车辆的预测性维护方面,适用性很强。