Magnetic resonance (MR) and computer tomography (CT) images are two typical types of medical images that provide mutually-complementary information for accurate clinical diagnosis and treatment. However, obtaining both images may be limited due to some considerations such as cost, radiation dose and modality missing. Recently, medical image synthesis has aroused gaining research interest to cope with this limitation. In this paper, we propose a bidirectional learning model, denoted as dual contrast cycleGAN (DC-cycleGAN), to synthesize medical images from unpaired data. Specifically, a dual contrast loss is introduced into the discriminators to indirectly build constraints between real source and synthetic images by taking advantage of samples from the source domain as negative samples and enforce the synthetic images to fall far away from the source domain. In addition, cross-entropy and structural similarity index (SSIM) are integrated into the DC-cycleGAN in order to consider both the luminance and structure of samples when synthesizing images. The experimental results indicate that DC-cycleGAN is able to produce promising results as compared with other cycleGAN-based medical image synthesis methods such as cycleGAN, RegGAN, DualGAN, and NiceGAN. The code will be available at https://github.com/JiayuanWang-JW/DC-cycleGAN.


翻译:磁共振(MR)和计算机透析(CT)图像是两种典型的医疗图像,它们为准确的临床诊断和治疗提供了相互补充的信息。然而,由于成本、辐射剂量和模式缺失等一些考虑,获取这两种图像可能受到限制。最近,医学图像合成引起了研究兴趣,以应对这一限制。在本文中,我们提出了一个双向学习模式,称为双向对比循环GAN(DC-cycopleGAN),以综合来自未受重视数据的医学图像。具体来说,在歧视者身上引入双重对比损失,通过利用源域样本作为负面样本,使合成图像远离源域,从而间接造成真实来源和合成图像之间的限制。此外,跨热带和结构相似指数(SSIM)被纳入了DC-cycourGAN(DC-cycleGANAANAANAANAAN),在BYCAGAGANANSANDGANDGAGANSAREGANANSANSLAGANANDGANAGANANANANANAGYGANANANANSLOLAGANGANGANGANANGANGANAGANAGANANDGYGYGANANDRAANANSLANSANANDGYGYGANAGAN ASANANDGYGANDGANANSLANDANDANSLANSLAGAGAGAGANSLANSLANSLANSLANSLANSLANSLANSLGNAGNAGAN SAGAN ASG ASGNAGNSLANSLANS NAGAN SAGNSLANSLANSLANSLANSLANSLANS SANSLANSLGYGYGYGYGYGYG SA SA SA SA SA SA SAG SAGANDANDANS SAG SAG SAG SAG SAG SAG SA SA SAG SAG SAG SA SA SA SA SA SA SA SA SA SA SA SA SA SA SA SA SA SAG

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
0+阅读 · 2023年2月1日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员