Conflict-Based Search is one of the most popular methods for multi-agent path finding. Though it is complete and optimal, it does not scale well. Recent works have been proposed to accelerate it by introducing various heuristics. However, whether these heuristics can apply to non-grid-based problem settings while maintaining their effectiveness remains an open question. In this work, we find that the answer is prone to be no. To this end, we propose a learning-based component, i.e., the Graph Transformer, as a heuristic function to accelerate the planning. The proposed method is provably complete and bounded-suboptimal with any desired factor. We conduct extensive experiments on two environments with dense graphs. Results show that the proposed Graph Transformer can be trained in problem instances with relatively few agents and generalizes well to a larger number of agents, while achieving better performance than state-of-the-art methods.
翻译:以冲突为基础的搜索是多试剂路径发现最受欢迎的方法之一。 虽然它是完整和最佳的, 但规模并不很好 。 最近的工作已经提出要通过引入各种超自然学来加速它。 但是, 这些超自然学是否可以适用于非基于网络的问题设置, 同时又保持其有效性, 仍然是一个尚未解决的问题 。 在这项工作中, 我们发现答案很容易是否定的 。 为此, 我们提出一个基于学习的组件, 即“ 图形变换器 ”, 作为加速规划的超自然功能 。 提议的方法是完全的, 并且与任何理想因素相交错。 我们用密集的图表对两种环境进行广泛的实验 。 结果显示, 拟议的“ 图形变换器” 可以在有问题的情况下接受培训, 使用相对较少的代理器, 并且向更多的代理器进行一般化, 同时取得比最先进的方法更好的性能 。