Currently several Bayesian approaches are available to estimate large sparse precision matrices, including Bayesian graphical Lasso (Wang, 2012), Bayesian structure learning (Banerjee and Ghosal, 2015), and graphical horseshoe (Li et al., 2019). Although these methods have exhibited nice empirical performances, in general they are computationally expensive. Moreover, we have limited knowledge about the theoretical properties, e.g., posterior contraction rate, of graphical Bayesian Lasso and graphical horseshoe. In this paper, we propose a new method that integrates some commonly used continuous shrinkage priors into a quasi-Bayesian framework featured by a pseudo-likelihood. Under mild conditions, we establish an optimal posterior contraction rate for the proposed method. Compared to existing approaches, our method has two main advantages. First, our method is computationally more efficient while achieving similar error rate; second, our framework is more amenable to theoretical analysis. Extensive simulation experiments and the analysis on a real data set are supportive of our theoretical results.
翻译:目前,有几种巴伊西亚方法可用于估计大量稀少的精确矩阵,包括巴伊西亚图形Lasso(Wang,2012年)、巴伊西亚结构学习(Banerjee和Ghosal,2015年)和图形马蹄木(Li等人,2019年),尽管这些方法展示了良好的实证性能,但一般而言,这些方法在计算上是昂贵的。此外,我们对诸如Bayesian图形Lasso和图形马蹄木的理论特性,例如后退率,了解有限。在本文中,我们提出了一种新方法,将一些常用的连续缩缩缩缩前法纳入以假相貌为特征的准巴伊西亚框架。在温和条件下,我们为拟议方法制定了最佳的远地点收缩率。与现有方法相比,我们的方法有两个主要优点。首先,我们的方法在计算上效率更高,同时得出类似的错误率;第二,我们的框架更便于进行理论分析。广泛的模拟实验和对真实数据集的分析支持我们的理论结果。