We introduce a new method for camera-model identification. Our approach combines two independent aspects of video file generation corresponding to video coding and media data encapsulation. To this end, a joint representation of the overall file metadata is developed and used in conjunction with a two-level hierarchical classification method. At the first level, our method groups videos into metaclasses considering several abstractions that represent high-level structural properties of file metadata. This is followed by a more nuanced classification of classes that comprise each metaclass. The method is evaluated on more than 20K videos obtained by combining four public video datasets. Tests show that a balanced accuracy of 91% is achieved in correctly identifying the class of a video among 119 video classes. This corresponds to an improvement of 6.5% over the conventional approach based on video file encapsulation characteristics. Furthermore, we investigate a setting relevant to forensic file recovery operations where file metadata cannot be located or are missing but video data is partially available. By estimating a partial list of encoding parameters from coded video data, we demonstrate that an identification accuracy of 57% can be achieved in camera-model identification in the absence of any other file metadata.
翻译:我们引入了一个新的相机模型识别方法。 我们的方法结合了视频文件生成的两个独立方面, 与视频编码和媒体数据封装相对。 为此, 开发了整体文档元数据的联合代表, 并结合两级等级分类方法使用。 在第一层次, 我们的方法将视频分组进入元类, 考虑代表文件元数据高层次结构属性的若干抽象特征。 之后对构成每个元类的类别进行更加细微的分类。 这种方法在通过合并四个公开视频数据集获得的20K多段视频上进行了评估。 测试显示, 在119个视频类中正确识别视频类别中, 实现了91%的均衡准确度。 这相当于根据视频文档封装特性, 常规方法提高了6.5%。 此外, 我们调查了与法医文件恢复操作相关的一个环境, 在那里, 文件元数据无法找到或丢失, 但部分有视频数据。 通过估算一个部分编码视频数据编码参数清单, 我们证明在没有任何其他文档元数据的情况下, 在相机模型识别中可以实现57%的识别精确度。