The Quantitative Group Testing (QGT) is about learning a (hidden) subset $K$ of some large domain $N$ using a sequence of queries, where a result of a query provides information about the size of the intersection of the query with the unknown subset $K$. Almost all previous work focused on randomized algorithms minimizing the number of queries; however, in case of large domains $N$, randomization may result in a significant deviation from the expected precision. Others assumed unlimited computational power (existential results) or adaptiveness of queries. In this work we propose efficient non-adaptive deterministic QGT algorithms for constructing queries and deconstructing a hidden set $K$ from the results of the queries, without using randomization, adaptiveness or unlimited computational power. The efficiency is three-fold. First, in terms of almost-optimal number of queries - we improve it by factor nearly $|K|$ comparing to previous constructive results. Second, our algorithms construct the queries and reconstruct set $K$ in polynomial time. Third, they work for any hidden set $K$, as well as multi-sets, and even if the results of the queries are capped at $\sqrt{|K|}$. We also analyze how often elements occur in queries and its impact to parallelization and fault-tolerance of the query system.
翻译:量化组测试(QGT) 是关于使用一系列查询来学习某大域的(隐藏)子(K) 美元, 某大域的( Hidden) 子( QGT) 子( QGT ) 。 在这项工作中, 查询的结果是提供有关查询与未知子( 未知子) 的交叉点大小的信息。 几乎所有以前的工作都侧重于随机化算法, 尽量减少查询的数量; 但是, 在大域中, 随机化可能导致与预期的准确性有显著的偏差。 其他人则假设无限计算能力( 存在的结果) 或查询的适应性。 在这项工作中, 我们提出高效的非适应性确定性QGT算法, 用于构建查询和解构查询结果的隐藏的一套 $( QGT ) 。 效率是三倍。 首先, 就几乎最佳的查询数量而言, 我们用近 $( K) 来改进它。 其次, 我们的算法在多式时间构建查询和重新设置 $( ) 任何隐藏的查询结果, 如果我们在多盘查中进行 。