Ripple Effect is a logic puzzle where the player has to fill numbers into empty cells in a rectangular grid. The grid is divided into rooms, and each room must contain consecutive integers starting from 1 to its size. Also, if two cells in the same row or column contain the same number $x$, there must be a space of at least $x$ cells separating the two cells. In this paper, we develop a physical zero-knowledge proof for the Ripple Effect puzzle using a deck of cards, which allows a prover to convince a verifier that he/she knows a solution without revealing it. In particular, given a secret number $x$ and a list of numbers, our protocol can physically verify that $x$ does not appear among the first $x$ numbers in the list without revealing $x$ or any number in the list.
翻译:矩形网格中, 玩家必须将数字填入空格中的空格中, 矩形效果是一个逻辑拼图 。 网格被分割成各个房间, 每个房间必须包含从 1 到其大小的连续整数 。 另外, 如果同一行或列中的两个单元格含有相同的数字 $x$, 则两个单元格之间必须有一个至少为$x$ 的单元格空间 。 在本文中, 我们使用一张卡片为 Riple 效果拼图开发一个物理的零知识证明, 使验证员能够说服验证员, 证明他/ 她知道一个解决方案, 而不透露它。 特别是, 如果有一个秘密数字 $x$ 和数字列表, 我们的协议可以实际确认$x$ 在列表中的第一个 $x$ 数字中没有出现, 而没有在列表中显示 $x$ 或任何数字 。