Convolutional neural networks (CNN) have enabled major advances in image classification through convolution and pooling. In particular, image pooling transforms a connected discrete grid into a reduced grid with the same connectivity and allows reduction functions to take into account all the pixels of an image. However, a pooling satisfying such properties does not exist for graphs. Indeed, some methods are based on a vertex selection step which induces an important loss of information. Other methods learn a fuzzy clustering of vertex sets which induces almost complete reduced graphs. We propose to overcome both problems using a new pooling method, named MIVSPool. This method is based on a selection of vertices called surviving vertices using a Maximal Independent Vertex Set (MIVS) and an assignment of the remaining vertices to the survivors. Consequently, our method does not discard any vertex information nor artificially increase the density of the graph. Experimental results show an increase in accuracy for graph classification on various standard datasets.
翻译:革命性神经网络(CNN)通过聚合和集合在图像分类方面取得了重大进步。 特别是, 图像集合将连接的离散网格转换成一个缩小的网格, 并允许减少功能考虑到图像的所有像素。 但是, 无法对图形进行这种满足特性的集合。 事实上, 有些方法基于一个导致重要信息损失的顶端选择步骤。 其他方法则学习了一种模糊的顶端组合, 从而几乎完全减少了图形。 我们提议使用一种名为 MIVSPool 的新集合方法来克服这两个问题。 这个方法基于一种选择, 称为“ 生存的脊椎”, 使用最大独立的 Vertex 设置( MIVS), 并将其余的脊椎指派给幸存者。 因此, 我们的方法不会丢弃任何顶端信息, 也不会人为地增加图形的密度。 实验结果显示, 各种标准数据集的图形分类的准确性提高了 。