This paper investigates the issue of determining the dimensions of row and column factor spaces in matrix-valued data. Exploiting the eigen-gap in the spectrum of sample second moment matrices of the data, we propose a family of randomised tests to check whether a one-way or two-way factor structure exists or not. Our tests do not require any arbitrary thresholding on the eigenvalues, and can be applied with no restrictions on the relative rate of divergence of the cross-sections to the sample sizes as they pass to infinity. Although tests are based on a randomization which does not vanish asymptotically, we propose a de-randomized, strong (based on the Law of the Iterated Logarithm) decision rule to choose in favor or against the presence of common factors. We use the proposed tests and decision rule in two ways. We further cast our individual tests in a sequential procedure whose output is an estimate of the number of common factors. Our tests are built on two variants of the sample second moment matrix of the data: one based on a row (or column) flattened version of the matrix-valued sequence, and one based on a projection-based method. Our simulations show that both procedures work well in large samples and, in small samples, the one based on the projection method delivers a superior performance compared to existing methods in virtually all cases considered.


翻译:本文调查了在矩阵估值数据中确定行和列系数空间尺寸的问题。 在数据样本第二秒矩阵的频谱中, 我们提出一组随机测试, 以检查单向或双向要素结构是否存在。 我们的测试并不要求对单向或双向要素结构进行任意的阈值, 并且可以不加限制地应用, 其截面与样本大小之间的相对差异率, 当它们到达无限度时, 我们的测试建立在随机化的基础上, 并且不会轻易消失。 虽然测试是基于随机化的, 我们提议了一种分流、 强的( 根据迭代逻辑法) 决定, 以有利于或不利于存在共同因素的方式做出选择。 我们用两种方式使用拟议的测试和决定规则。 我们进一步将单项测试置于一个顺序程序, 其产出是对常见因素的数量进行估计。 我们的测试建立在数据第二秒样本矩阵的两种变异体上: 一种基于一行( 或一列) 的、 强度( 根据迭代的逻辑) 规则, 选择有利于或反对共同存在共同因素。 我们的当前预测方法中, 以一个基于一个已考虑的模型模拟的模型的、 以及一个快速的、 显示现有的模型的、 显示的、 以及基于一个快速的模型的、 的、 以及基于整个的模型的、 和整个的模型的模型的模型的、 显示的大规模的模拟的模型的、 显示的、 显示的、 的、 和整个的大规模的模型的、 的模型的模型的模型的模型的模型的模型的模型的模型的模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
0+阅读 · 2022年10月31日
Arxiv
54+阅读 · 2022年1月1日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员