This study presents insights from interviews with nineteen Knowledge Graph (KG) practitioners who work in both enterprise and academic settings on a wide variety of use cases. Through this study, we identify critical challenges experienced by KG practitioners when creating, exploring, and analyzing KGs that could be alleviated through visualization design. Our findings reveal three major personas among KG practitioners - KG Builders, Analysts, and Consumers - each of whom have their own distinct expertise and needs. We discover that KG Builders would benefit from schema enforcers, while KG Analysts need customizable query builders that provide interim query results. For KG Consumers, we identify a lack of efficacy for node-link diagrams, and the need for tailored domain-specific visualizations to promote KG adoption and comprehension. Lastly, we find that implementing KGs effectively in practice requires both technical and social solutions that are not addressed with current tools, technologies, and collaborative workflows. From the analysis of our interviews, we distill several visualization research directions to improve KG usability, including knowledge cards that balance digestibility and discoverability, timeline views to track temporal changes, interfaces that support organic discovery, and semantic explanations for AI and machine learning predictions.
翻译:该研究通过对19位在企业和学术环境中从事各种用例的知识图谱实践者的访谈,提出了有关知识图谱用户在创建、探索和分析知识图谱时遇到的关键挑战,并探讨可通过可视化设计减轻这种挑战的方式。该研究发现知识图谱实践者中存在三个主要的角色人物,即知识图谱构建者、分析师和消费者,每个角色人物都有自己独特的专业知识和需求。研究表明,知识图谱构建者需要一个模式强制器,而知识图谱分析师需要可定制的查询构建器,以提供中间查询结果。对于知识图谱消费者,研究发现节点连接图效果欠佳,需要定制的领域特定可视化来促进知识图谱的应用和理解。最后,研究发现有效实现知识图谱需要技术和社会解决方案,并指出当前工具、技术和协作工作流程并不能解决这些问题。通过对访谈分析,研究人员总结了几个可视化研究方向,以改善知识图谱的可用性,包括平衡易消化性和可发现性的知识卡、跟踪时间变化的时间轴视图、支持有机发现的界面和解释人工智能和机器学习预测的语义解释。