With the rise of internet technology amidst increasing rates of urbanization, sharing information has never been easier thanks to globally-adopted platforms for digital communication. The resulting output of massive amounts of user-generated data can be used to enhance our understanding of significant societal issues particularly for urbanizing areas. In order to better analyze protest behavior, we enhanced the GSR dataset and manually labeled all the images. We used deep learning techniques to analyze social media data to detect social unrest through image classification, which performed good in predict multi-attributes, then also used map visualization to display protest behaviors across the country.
翻译:随着互联网技术在城市化率不断上升,由于全球采用的数字通信平台,共享信息从来就不那么容易。 大量用户生成的数据所产生的产出可以用来提高我们对重大社会问题的理解,特别是城市化地区的重大社会问题。 为了更好地分析抗议行为,我们强化了GSR数据集,并手工标注了所有图像。 我们利用深层次学习技术分析社交媒体数据,通过图像分类发现社会动荡。 图像分类在预测多来源信息方面表现良好,然后使用地图可视化在全国展示抗议行为。