Stochastic processes are random variables with values in some space of paths. However, reducing a stochastic process to a path-valued random variable ignores its filtration, i.e. the flow of information carried by the process through time. By conditioning the process on its filtration, we introduce a family of higher order kernel mean embeddings (KMEs) that generalizes the notion of KME and captures additional information related to the filtration. We derive empirical estimators for the associated higher order maximum mean discrepancies (MMDs) and prove consistency. We then construct a filtration-sensitive kernel two-sample test able to pick up information that gets missed by the standard MMD test. In addition, leveraging our higher order MMDs we construct a family of universal kernels on stochastic processes that allows to solve real-world calibration and optimal stopping problems in quantitative finance (such as the pricing of American options) via classical kernel-based regression methods. Finally, adapting existing tests for conditional independence to the case of stochastic processes, we design a causal-discovery algorithm to recover the causal graph of structural dependencies among interacting bodies solely from observations of their multidimensional trajectories.


翻译:触摸过程是随机的变量,在某些路径空间中具有价值。 然而, 将随机随机变量降低为路径估价的随机变量, 忽略了过滤过程, 即由过程随时间传播的信息流动。 通过将过程设置在过滤上, 我们引入了一个由高排序内核嵌入( KMEs) 组成的大家庭, 将 KME 的概念概括化, 并捕捉与过滤相关的额外信息。 我们通过基于古典内核的回归方法, 得出相关最高顺序差异( MMDs) 的经验性估测器, 并证明一致性。 然后, 我们构建一个能接收标准 MMMD 测试遗漏的信息的过滤敏感多层内核双模测试。 此外, 我们利用我们更高的程序, 利用我们更高的程序, 将通用内核内核嵌嵌嵌嵌组成一个组合, 能够解决真实世界校准和最佳遏制量化融资问题( 如美国选项的定价 ) 。 最后, 我们调整现有的测试, 以有条件的独立性测试, 以测试为标准性、 结构性的、 结构性、 和性分析性分析性分析性分析性系统, 我们设计一个统一的机算。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
65+阅读 · 2021年5月29日
专知会员服务
44+阅读 · 2020年12月18日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
生物探索
3+阅读 · 2018年2月10日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月25日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
专知会员服务
65+阅读 · 2021年5月29日
专知会员服务
44+阅读 · 2020年12月18日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
生物探索
3+阅读 · 2018年2月10日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员