We formulate a free probabilistic analog of the Wasserstein manifold on $\mathbb{R}^d$ (the formal Riemannian manifold of smooth probability densities on $\mathbb{R}^d$), and we use it to study smooth non-commutative transport of measure. The points of the free Wasserstein manifold $\mathscr{W}(\mathbb{R}^{*d})$ are smooth tracial non-commutative functions $V$ with quadratic growth at $\infty$, which correspond to minus the log-density in the classical setting. The space of smooth tracial non-commutative functions used here is a new one whose definition and basic properties we develop in the paper; they are scalar-valued functions of self-adjoint $d$-tuples from arbitrary tracial von Neumann algebras that can be approximated by trace polynomials. The space of non-commutative diffeomorphisms $\mathscr{D}(\mathbb{R}^{*d})$ acts on $\mathscr{W}(\mathbb{R}^{*d})$ by transport, and the basic relationship between tangent vectors for $\mathscr{D}(\mathbb{R}^{*d})$ and tangent vectors for $\mathscr{W}(\mathbb{R}^{*d})$ is described using the Laplacian $L_V$ associated to $V$ and its pseudo-inverse $\Psi_V$ (when defined). Following similar arguments to arXiv:1204.2182, arXiv:1701.00132, and arXiv:1906.10051 in the new setting, we give a rigorous proof for the existence of smooth transport along any path $t \mapsto V_t$ when $V$ is sufficiently close $(1/2) \sum_j \operatorname{tr}(x_j^2)$, as well as smooth triangular transport.
翻译:我们用 $\ mathb{R ⁇ d$( 正式的 Rimann 方块, 平滑概率密度在$\ mathb{R ⁇ d$( 平滑的Rimann 方块) 来研究测量的平滑非调整性运输。 自由的 Wasserstein 方块的点是平滑的trocy非平坦的函数 $3( mathb{R}R ⁇ d} 方块以$( 平坦增长在$@infty$( 平坦的平坦度) 。 这里使用的平滑的不平滑性函数空间是一个新的空间, 我们在纸上开发定义和基本特性; 它们具有自对合的 $- 方块值值的功能, 以追踪聚苯乙烯 和新结构 。 任何非平淡化的立体空间, 以 $\\ xxxxx美元( 平坦) 方块( 平坦) 方块_R} 方块 和基本关系之间的空间是 方块 方块 方块 和( 方块 方块 方块 方块 方块的 方块 方块 方块 方块 以( 方块 以 方块 方块 方块 方块 方块 以 以 方块 以 ====\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\