The workhorse of machine learning is stochastic gradient descent. To access stochastic gradients, it is common to consider iteratively input/output pairs of a training dataset. Interestingly, it appears that one does not need full supervision to access stochastic gradients, which is the main motivation of this paper. After formalizing the "active labeling" problem, which generalizes active learning based on partial supervision, we provide a streaming technique that provably minimizes the ratio of generalization error over number of samples. We illustrate our technique in depth for robust regression.
翻译:机器学习的工作马是随机梯度下降。 要访问随机梯度, 通常会考虑培训数据集的迭代输入/ 输出对。 有趣的是, 似乎不需要全面监督来访问随机梯度, 而这是本文的主要动机。 在正式解决“ 主动标签” 问题之后, 我们提供了一条流技术, 可以将一般误差与样本数量之比降到最低。 我们用深度展示了我们如何进行强力回归的技术 。