Distributed Artificial Intelligence-Generated Content (AIGC) has attracted increasing attention. However, it faces two significant challenges: how to maximize the subjective Quality of Experience (QoE) and how to enhance the energy efficiency, which are particularly pronounced in widely adopted Generative Diffusion Model (GDM)-based AIGC services for image generation. In this paper, we propose a novel user-centric Interactive AI (IAI) approach for service management, with a distributed GDM-based AIGC framework, prioritizing efficient and collaborative GDM deployment. Specifically, we restructure the GDM's inference process, i.e., the denoising chain, to enable users' semantically similar prompts to share a portion of diffusion steps. Furthermore, to maximize the users' subjective QoE, we propose an IAI approach, i.e., Reinforcement Learning With Large Language Models Interaction (RLLI), which utilizes Large Language Model (LLM)-empowered generative agents to replicate users interaction, providing real-time and subjective QoE feedback that reflects a spectrum of user personalities. Lastly, we present the GDM-based Deep Deterministic Policy Gradient (G-DDPG) algorithm, adapted to the proposed RLLI framework, for effective communication and computing resource allocation while considering user subjective personalities and dynamic wireless environments in decision-making. Simulation results show that G-DDPG can increase the sum QoE by 15%, compared with the conventional DDPG algorithm.
翻译:暂无翻译