The polynomial identity lemma (also called the "Schwartz-Zippel lemma") states that any nonzero polynomial $f(x_1,\ldots, x_n)$ of degree at most $s$ will evaluate to a nonzero value at some point on a grid $S^n \subseteq \mathbb{F}^n$ with $|S| > s$. Thus, there is an explicit hitting set for all $n$-variate degree $s$, size $s$ algebraic circuits of size $(s+1)^n$. In this paper, we prove the following results: - Let $\varepsilon > 0$ be a constant. For a sufficiently large constant $n$ and all $s > n$, if we have an explicit hitting set of size $(s+1)^{n-\varepsilon}$ for the class of $n$-variate degree $s$ polynomials that are computable by algebraic circuits of size $s$, then for all $s$, we have an explicit hitting set of size $s^{\exp \circ \exp (O(\log^\ast s))}$ for $s$-variate circuits of degree $s$ and size $s$. That is, if we can obtain a barely non-trivial exponent compared to the trivial $(s+1)^{n}$ sized hitting set even for constant variate circuits, we can get an almost complete derandomization of PIT. - The above result holds when "circuits" are replaced by "formulas" or "algebraic branching programs". This extends a recent surprising result of Agrawal, Ghosh and Saxena (STOC 2018,PNAS 2019) who proved the same conclusion for the class of algebraic circuits, if the hypothesis provided a hitting set of size at most $(s^{n^{0.5 - \delta}})$ (where $\delta>0$ is any constant). Hence, our work significantly weakens the hypothesis of Agrawal, Ghosh and Saxena to only require a slightly non-trivial saving over the trivial hitting set, and also presents the first such result for algebraic branching programs and formulas.
翻译:暂无翻译