Mobile edge computing (MEC) is a promising paradigm to accommodate the increasingly prosperous delay-sensitive and computation-intensive applications in 5G systems. To achieve optimum computation performance in a dynamic MEC environment, mobile devices often need to make online decisions on whether to offload the computation tasks to nearby edge terminals under the uncertainty of future system information (e.g., random wireless channel gain and task arrivals). The design of an efficient online offloading algorithm is challenging. On one hand, the fast-varying edge environment requires frequently solving a hard combinatorial optimization problem where the integer offloading decision and continuous resource allocation variables are strongly coupled. On the other hand, the uncertainty of future system states makes it hard for the online decisions to satisfy long-term system constraints. To address these challenges, this article overviews the existing methods and introduces a novel framework that efficiently integrates model-based optimization and model-free learning techniques. Besides, we suggest some promising future research directions of online computation offloading control in MEC networks.
翻译:移动边缘计算(MEC)是适应5G系统日益繁荣的延迟敏感和计算密集型应用的一个很有希望的模式。 为了在动态的MEC环境中实现最佳计算性能,移动设备往往需要在线决定是否在今后系统信息不确定的情况下(如随机无线频道收益和任务到达)将计算任务卸载到附近的边缘终端(如随机无线频道收益和任务到达),设计高效的在线卸载算法具有挑战性。一方面,快速变化边缘环境需要经常解决硬组合优化问题,因为整体卸载决定和连续资源分配变量紧密结合。另一方面,未来系统的不确定性使得在线决定难以满足长期系统限制。为应对这些挑战,本文章概述了现有方法,并提出了一个新框架,高效地整合了基于模型的优化和无模式的学习技术。此外,我们建议在未来对MEC网络的在线卸载控制进行有希望的研究方向。